基于深度学习的牙齿病变自动检测算法
龋病、牙周病等口腔疾病是影响人民健康的常见病和多发病,不仅影响口腔器官功能的发挥,还常常影响全身健康,导致生活质量下降.X光片是牙科疾病诊断过程中的重要依据之一,X光片的智能化诊断对于快速准确诊断牙齿病变具有重要作用.为了实现对龋齿病变和牙根尖周病变的自动检测,本团队创建了牙齿X光片数据集,并采用YOLOV5算法对牙齿X光片中的病变区域进行了检测.检测结果表明,该算法可以有效识别牙齿中的龋齿病变和牙根尖周病变,并能检测出这两种病变的区域,检测准确率超过95%,可以满足牙齿病变智能化诊断的临床需求.
图像处理、深度学习、牙齿病变、目标检测
49
TP181(自动化基础理论)
2022-11-28(万方平台首次上网日期,不代表论文的发表时间)
共7页
120-126