期刊专题

10.3788/CJL201946.1010001

基于深度学习的脉冲激光测距回波时刻解算方法

引用
为了提高脉冲激光测距回波时刻解算方法的应用场景适应性,将回波时刻解算问题转换为波形分类的问题,采用深度学习的新方法实现回波时刻的解算.通过仿真模拟计算产生0.1 ns时间分辨率的不同距离、信号幅度、波形形状和噪声的样本回波数据,训练一维卷积神经网络模型,在样本测试集上获得了99.85%的分类精度;采用深度学习方法和高斯拟合方法处理同样的机载激光雷达回波数据,墙面线扫数据解算结果相关系数为0.99981,外场飞行试验数据平面拟合残差均在20 mm左右,两种方法回波时刻解算效果相当.结果 表明,新方法能够满足机载脉冲激光测距回波时刻解算要求,具备进一步提高解算精度和适应更多应用场景的潜力.

遥感、脉冲激光测距、回波时刻解算、深度学习、卷积神经网络、激光雷达

46

TN958.98

国家重点研发计划;国家重大科学仪器设备开发专项

2019-12-09(万方平台首次上网日期,不代表论文的发表时间)

共10页

294-303

相关文献
评论
暂无封面信息
查看本期封面目录

中国激光

0258-7025

31-1339/TN

46

2019,46(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn