期刊专题

10.11930/j.issn.1004-9649.201812068

基于多模型鲁棒输入训练神经网络协同的燃气–蒸汽联合循环机组传感器故障诊断方法

引用
为提高燃气–蒸汽联合循环机组传感器测量值的准确性及可靠性,提出了一种基于多模型鲁棒输入训练神经网络(RITNN)的燃气–蒸汽联合循环机组传感器故障诊断方法.该方法建立若干燃气–蒸汽联合循环重要参数的数据重构模型,并对各模型进行优先级划分,以串并联方式设定模型间关系,通过可靠参数的逐级生成和传递,有效抑制了多传感器显著故障产生的残差污染,提高了故障诊断的准确性及可靠性,进而给出了传感器故障诊断流程,建立了完整的传感器故障诊断系统.以某200 MW级燃气–蒸汽联合循环机组为研究对象,对多传感器故障进行诊断,并与RITNN单一模型方法和输入训练神经网络(ITNN)单一模型方法进行对比,结果表明,提出的多模型RITNN故障诊断方法诊断精度更高,可保证燃气–蒸汽联合循环机组稳定运行.

多模型、鲁棒输入训练神经网络、故障诊断、联合循环

52

TM611.31;TM621(发电、发电厂)

2019-12-19(万方平台首次上网日期,不代表论文的发表时间)

共9页

125-133

暂无封面信息
查看本期封面目录

中国电力

1004-9649

11-3265/TM

52

2019,52(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn