期刊专题

10.11930/j.issn.1004-9649.201705051

基于反向云自适应粒子群算法的多目标无功优化

引用
针对粒子群算法在高维复杂问题寻优时易陷入局部寻优的现象,提出了反向云自适应粒子群算法(OCAPSO),通过反向学习加快算法的收敛速度,使用云模型来平衡粒子的全部搜索和局部搜索能力,使用自适应突变机制增强种群的多样性.用高维广义Schwarz函数对OCAPSO的有效性进行验证,进一步以IEEE30节点系统进行单目标和多目标无功优化测试并将测试结果与粒子群优化(PSO),进化算法(EA)等测试结果进行比较,证实了该算法的优越性.分析表明,OCAPSO算法用于解决多目标无功优化问题有效可行.

无功优化、粒子群优化、反向学习、云模型、自适应、多目标

51

TM714.3;TP301.6(输配电工程、电力网及电力系统)

江苏省青年科学基金资助项目BK20150115

2018-08-27(万方平台首次上网日期,不代表论文的发表时间)

共7页

21-27

相关文献
评论
暂无封面信息
查看本期封面目录

中国电力

1004-9649

11-3265/TM

51

2018,51(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn