期刊专题

10.13465/j.cnki.jvs.2023.04.027

基于EEMD-SOBI的水电机组多源信息分离处理

引用
水电机组振动观测信号包括相互耦合的水-机-电振源及各类噪声成分,本文提出采用集合经验模态分解-二阶盲辨识(ensemble empirical mode decomposition-second order blind source separation,EE MD-SOBI)的方法对多源观测信号进行识别.对观测信号进行解相关等初步处理后,白化计算各信号二阶统计量,计算观测信号协方差对角矩阵,最终计算振源的最优估计,对振源成分进行识别.仿真计算和模拟计算的结果均表明,仅利用观测信号均可分离出源信息且对噪声不敏感,基本能够识别出源信息,针对某电站实测单信号和多信号分析时,可有效识别出信号源成分,为水电机组的振源识别提供支撑.

集合经验模态分解-二阶盲辨识(EEMD-SOBI)、水电机组、多源信号、振源识别

42

TV32+3;TV731(水工结构)

国家自然科学基金;西藏自治区科技计划项目;河南省科技攻关计划;河南省高等学校重点科研项目

2023-03-07(万方平台首次上网日期,不代表论文的发表时间)

共8页

229-235,294

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

42

2023,42(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn