期刊专题

10.13465/j.cnki.jvs.2021.20.034

基于LSTM神经网络和故障特征增强的行星齿轮箱故障诊断

引用
针对支持向量机、深度学习等人工智能算法在齿轮箱故障诊断应用上的不足,提出一种基于长短时记忆(long short-term memory,LSTM)神经网络和故障特征增强的行星齿轮箱故障智能诊断方法.该方法对行星齿轮箱不同局部故障振动信号进行滑动加窗截取,对截取的每段信号分别做快速傅里叶变换并选取包含故障特征丰富的频段实现对故障特征的增强,并以该数据作为输入对LSTM神经网络进行训练,通过训练完成的LSTM神经网络模型智能提取所选频段内的故障特征并实现行星齿轮箱不同局部故障的识别诊断.试验结果表明该方法可以有效诊断行星齿轮箱不同局部故障,并能提高网络模型的故障识别率.

行星齿轮箱;故障特征增强;LSTM神经网络;故障诊断

40

TH165+.3;TH33.33

国家自然科学基金51675251

2021-11-10(万方平台首次上网日期,不代表论文的发表时间)

共7页

271-277

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

40

2021,40(20)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn