期刊专题

10.13465/j.cnki.jvs.2021.20.020

基于双对抗编码的时变工况下行星齿轮箱智能故障诊断

引用
时变工况下行星齿轮箱故障特征频率随时间变化,常规的统计特征通常难以有效地表征非平稳信号的时变特性,人工识别故障特征较为困难.针对上述问题,提出基于双对抗编码的智能故障诊断模型.先获取样本信号的时频图,揭示信号频率随时间变化规律;构建编码与解码网络,并用编码器的输入与解码器的输出对判别器1进行对抗训练,确保重构信号与原始信号服从相同分布,从而提取有效的时频图特征;此外,构建高斯混合分布,并根据类别信息从对应分布进行采样,判别器2用于使提取的特征服从给定的高斯混合分布,从而实现通过控制混合分布来强化不同类别特征间的差异性.最后,用强化的特征训练Softmax分类器,并识别测试样本故障类别.方法 经行星齿轮箱实验数据进行了验证,研究表明,模型通过对抗机制使重构信号服从与原始信号相同的分布,同时通过高斯混合分布对隐变量进行控制,提高了特征聚类性能,有效诊断了齿轮故障,与其他方法相比表现出一定的优越性.

行星齿轮箱;智能故障诊断;高斯混合分布;双对抗编码;时变工况

40

TH17

NCIAE博士科研启动基金;国家自然科学基金

2021-11-10(万方平台首次上网日期,不代表论文的发表时间)

共10页

158-167

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

40

2021,40(20)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn