期刊专题

10.13465/j.cnki.jvs.2021.10.013

基于多分支深度可分离卷积神经网络的滚动轴承故障诊断研究

引用
针对传统滚动轴承故障诊断方法存在抗噪性差、需要人工特征提取、计算量较大、对运行设备要求高的问题,提出一种基于多分支深度可分离卷积神经网络(MBDS-CNN)的滚动轴承故障诊断方法,利用深度可分离卷积和权重剪枝技术对模型尺寸进行压缩,通过多分支结构保证模型的精度,避免梯度消失现象的发生.使用模型尺寸、诊断精度、预测速度作为评价指标对模型进行评估.试验结果证明,基于多分支深度可分离卷积神经网络的滚动轴承故障诊断,可以在噪声环境下有效识别轴承不同部位故障程度,提高了诊断效率,降低了对运行设备性能的要求.

滚动轴承、故障程度、抗噪性、卷积神经网络(CNN)、故障诊断

40

TH133.33;U279.34

国家自然科学基金;国家自然科学基金;北京市自然科学基金;国家自然科学基金;青年拔尖人才培育项目;青年拔尖人才培育项目;中央高校基本科研业务费专项;中央高校基本科研业务费专项;研究生创新项目;北京建筑大学科学研究基金

2021-06-21(万方平台首次上网日期,不代表论文的发表时间)

共8页

95-102

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

40

2021,40(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn