期刊专题

10.13465/j.cnki.jvs.2020.05.012

基于PSO改进深度置信网络的滚动轴承故障诊断

引用
针对深度置信网络(Deep Belief Network,DBN)用于轴承故障诊断时,网络层结构调试比较费时等问题,提出一种基于粒子群优化(Particle Swarm Optimization,PSO)的DBN算法,以及基于该算法的轴承故障诊断模型.该模型利用PSO算法优选DBN网络结构,并通过自适应时刻估计法微调模型参数,随后运用具有最优结构的DBN模型直接从原始振动信号中提取低维故障特征,并将其输入到Soft-max分类器中识别轴承的故障模式.该算法与支持向量机、BP神经网络、DBN、堆叠降噪自编码等方法进行对比分析,实验结果表明,PSO改进的DBN算法具有更高的准确率以及更好的鲁棒性.

深度置信网络(DBN)、粒子群优化算法(PSO)、自适应时刻估计、滚动轴承、故障诊断

39

THA133.3

湖北省自然科学基金资助;中央高校基本科研业务费专项资金资助

2020-04-21(万方平台首次上网日期,不代表论文的发表时间)

共8页

89-96

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

39

2020,39(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn