期刊专题

10.13465/j.cnki.jvs.2019.16.014

基于改进LE和约束种子K均值的半监督故障识别

引用
为充分利用少量有标记样本蕴含的重要信息,在拉普拉斯特征映射(LE)算法基础上,对标记样本点进行置信度约束,提出了改进的LE算法及基于该算法的半监督故障诊断模型.该模型采用改进的LE算法,直接从原始高维振动信号中提取最敏感的低维流形特征,随后将其输入到基于约束种子K均值算法构建的分类器,从而以可视化的聚类结果标识机械设备的运行状态.与核主成分分析、核判别分析等经典算法进行比较,该模型能明显提高轴承故障类型和滚动体故障严重性的识别性能.

半监督、拉普拉斯特征映射(LE)、约束种子K均值、故障诊断

38

TH133.3

中央高校基本科研业务费专项资金2018IVA022;国家自然科学基金51705386,51705385;湖北省科技支撑计划项目2015BAA063,2014BAA032

2019-09-24(万方平台首次上网日期,不代表论文的发表时间)

共7页

93-99

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

38

2019,38(16)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn