期刊专题

10.13465/j.cnki.jvs.2018.11.008

近邻概率距离在旋转机械故障集分类中的应用方法

引用
针对多种故障类型的特征属性相互交叉导致故障难以辨识的问题,提出一种考虑相邻点之间成为近邻点概率的新度量函数.将新提出的近邻概率距离(Nearby Probability Distance,NPD)应用于局部保持投影算法(Locality Preserving Projection,LPP)与K-近邻(K-Nearest Neighbor,KNN)分类器中,提出基于近邻概率距离的局部保持投影算法(Nearby Probability Distance Locality Preserving Projection,NPDLPP)与基于近邻概率距离的K-近邻(Nearby Probability Distance K-Nearest Neighbor,NPDKNN)分类器;首先通过时域、频域特征提取方法,将振动信号转化为高维特征数据集,然后通过NPDLPP将高维数据集降维到低维空间,最后将降维得到的低维敏感特征集输入到NPDKNN中进行模式识别;用一个双跨度转子系统的振动信号集合进行验证,证明了所提出的降维算法效果明显,它能够达到各个故障类型更好分离.研究表明,新提出的近邻概率距离较传统的欧式距离测度更能最小化类内散度,最大化类间分离度.

局部保持投影、近邻概率距离、K近邻分类器、距离度量

37

TH17;TH166

国家自然科学基金51675253

2018-12-21(万方平台首次上网日期,不代表论文的发表时间)

共7页

48-54

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

37

2018,37(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn