期刊专题

10.13465/j.cnki.jvs.2017.22.026

基于SVD优化LMD的电梯导靴振动信号故障特征提取

引用
针对局部均值分解(Local Mean Decomposition,LMD)方法提取电梯导靴振动信号的故障特征分量时存在的模态混淆现象,本文提出了一种基于奇异值分解(Singular Value Decomposition,SVD)优化局部均值分解(Local Mean Decomposition,LMD)的电梯导靴振动信号故障特征提取方法.该方法以奇异值贡献率原则构造原始信号的Hankel矩阵,采用SVD对Hankel矩阵进行分解;将曲率谱原则与奇异值贡献率原则相结合对奇异值进行选择,将包含主要故障信息的奇异值进行逆重构,得到剔除噪声信号与光滑信号的突变信号;并利用LMD方法对突变信号进行故障特征提取,得到能够突出原始信号振动特征的故障特征分量.实例结果表明该方法有效改善了LMD的模态混淆现象,更准确地提取了振动信号的故障特征分量,为电梯导靴的故障诊断提供了一条有效的途径.

电梯导靴、奇异值分解、局部均值分解、模态混淆、特征提取

36

TH277(起重机械与运输机械)

国家质检总局科技计划项目资助2013QK104;云南省质量技术监督局科技计划项目资助2013YNZJKJ02

2018-04-02(万方平台首次上网日期,不代表论文的发表时间)

共6页

166-171

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

36

2017,36(22)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn