期刊专题

10.13465/j.cnki.jvs.2017.18.033

基于核极限学习机的多变量非平稳脉动风速预测

引用
运用快速集合经验模态分解(FEEMD)技术将非平稳下击暴流风速分解为一系列的固有模态分量.随后,建立核极限学习机(KELM)非平稳风速预测模型(FEEMD-KELM),分别对分解后的非平稳脉动风速训练集和测试集实施预测.为比较,同时考虑了FEEMD-ELM的预测结果.通过比较这两种预测算法的结果,在非平稳下击暴流风速预测的稳定性和精度方面,发现FEEMD-KELM优于FEEMD-ELM.

预测、极限学习机、核极限学习机、非平稳性、下击暴流、脉动风速、快速集合经验模态分解

36

TU311(建筑结构)

2017-12-01(万方平台首次上网日期,不代表论文的发表时间)

共8页

223-230

相关文献
评论
暂无封面信息
查看本期封面目录

振动与冲击

1000-3835

31-1316/TU

36

2017,36(18)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn