期刊专题

10.16383/j.aas.c220631

安全强化学习综述

引用
强化学习(Reinforcement learning,RL)在围棋、视频游戏、导航、推荐系统等领域均取得了巨大成功.然而,许多强化学习算法仍然无法直接移植到真实物理环境中.这是因为在模拟场景下智能体能以不断试错的方式与环境进行交互,从而学习最优策略.但考虑到安全因素,很多现实世界的应用则要求限制智能体的随机探索行为.因此,安全问题成为强化学习从模拟到现实的一个重要挑战.近年来,许多研究致力于开发安全强化学习(Safe reinforcement learning,SRL)算法,在确保系统性能的同时满足安全约束.本文对现有的安全强化学习算法进行全面综述,将其归为三类:修改学习过程、修改学习目标、离线强化学习,并介绍了 5 大基准测试平台:Safety Gym、safe-control-gym、SafeRL-Kit、D4RL、NeoRL.最后总结了安全强化学习在自动驾驶、机器人控制、工业过程控制、电力系统优化和医疗健康领域中的应用,并给出结论与展望.

安全强化学习、约束马尔科夫决策过程、学习过程、学习目标、离线强化学习

49

G251;TP301.6;TP273

2023-10-10(万方平台首次上网日期,不代表论文的发表时间)

共23页

1813-1835

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

49

2023,49(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn