安全强化学习综述
强化学习(Reinforcement learning,RL)在围棋、视频游戏、导航、推荐系统等领域均取得了巨大成功.然而,许多强化学习算法仍然无法直接移植到真实物理环境中.这是因为在模拟场景下智能体能以不断试错的方式与环境进行交互,从而学习最优策略.但考虑到安全因素,很多现实世界的应用则要求限制智能体的随机探索行为.因此,安全问题成为强化学习从模拟到现实的一个重要挑战.近年来,许多研究致力于开发安全强化学习(Safe reinforcement learning,SRL)算法,在确保系统性能的同时满足安全约束.本文对现有的安全强化学习算法进行全面综述,将其归为三类:修改学习过程、修改学习目标、离线强化学习,并介绍了 5 大基准测试平台:Safety Gym、safe-control-gym、SafeRL-Kit、D4RL、NeoRL.最后总结了安全强化学习在自动驾驶、机器人控制、工业过程控制、电力系统优化和医疗健康领域中的应用,并给出结论与展望.
安全强化学习、约束马尔科夫决策过程、学习过程、学习目标、离线强化学习
49
G251;TP301.6;TP273
2023-10-10(万方平台首次上网日期,不代表论文的发表时间)
共23页
1813-1835