基于不确定性的多元时间序列分类算法研究
多元时间序列(Multivariate time series, MTS)分类是许多领域中的重要问题, 准确的分类结果可以有效地帮助决策. 当前的MTS分类算法在个体的表征学习阶段难以自动建模多元变量之间复杂的交互关系, 并且无法评估分类结果的可信度, 这会导致模型性能受限, 以及缺乏具备统计意义的可靠性解释. 本文提出了一种基于不确定性的多元时间序列分类算法, 变分贝叶斯共享图神经网络, 即VBSGNN (Variational Bayes shared graph neural network). 首先通过图神经网络(Graph neural network, GNN)提取多元变量之间的交互特征, 然后利用贝叶斯神经网络(Bayesian neural network, BNN)为预测过程引入了不确定性. 最后在10个公开MTS数据集上进行了算法实验, 并与当前提出的7类算法进行了比较, 结果表明VBSGNN可有效学习多元变量之间的交互关系, 提升了分类效果, 并使得模型具备一定的可靠性评估能力.
多元时间序列预测、图神经网络、不确定性、随机变分推断、贝叶斯神经网络
49
TP393;TP273;TN91
国家自然科学基金;辽宁省教育厅科学研究经费;上海市卫生健康委员会科研课题
2023-05-11(万方平台首次上网日期,不代表论文的发表时间)
共15页
790-804