期刊专题

10.16383/j.aas.c220476

考虑全局和局部帕累托前沿的多模态多目标优化算法

引用
多模态多目标优化问题(Multimodal multi-objective optimization problems,MMOPs)是指具有多个全局或局部Pareto解集(Pareto solution sets,PSs)的多目标优化问题(Multi-objective optimization problems,MOPs).在这类问题中,Pareto前沿(Pareto front,PF)上相距很近的目标向量,可能对应于决策空间中相距较远的不同解.在实际应用中全局或局部最优解的缺失可能导致决策者缺乏对问题的整体认识,造成不必要的困难或经济损失.大部分多模态多目标进化算法(Multimodal multi-objective evolutionary algorithms,MMEAs)仅关注获取尽可能多的全局最优解集,而忽略了对局部最优解集的搜索.为了找到局部最优解集并提高多模态优化算法的性能,首先提出了一种局部收敛性指标(ILC),并设计了一种基于该指标和改进种群拥挤度的环境选择策略.基于此提出了一种用于获取全局和局部最优解集的多模态多目标优化算法.经实验验证,该算法在对比的代表性算法中性能较好.

多模态多目标优化、局部收敛性、进化算法、种群多样性

49

TP301.6;TM73;O224

国家优秀青年科学基金项目;国家自然科学基金;国家自然科学基金

2023-01-16(万方平台首次上网日期,不代表论文的发表时间)

共13页

148-160

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

49

2023,49(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn