期刊专题

10.16383/j.aas.c210156

基于深度学习LDAMP网络的量子状态估计

引用
设计出一种基于学习去噪的近似消息传递(Learned denoising-based approximate message passing,LDAMP)的深度学习网络,将其应用于量子状态的估计.该网络将去噪卷积神经网络与基于去噪的近似消息传递算法相结合,利用量子系统输出的测量值作为网络输入,通过设计出的带有去噪卷积神经网络的LDAMP网络重构出原始密度矩阵,从大量的训练样本中提取各种不同类型密度矩阵的结构特征,来实现对量子本征态、叠加态以及混合态的估计.在对4个量子位的量子态估计的具体实例中,分别在无和有测量噪声干扰情况下,对基于LDAMP网络的量子态估计进行了仿真实验性能研究,并与基于压缩感知的交替方向乘子法和三维块匹配近似消息传递等算法进行估计性能对比研究.数值仿真实验结果表明,所设计的LDAMP网络可以在较少的测量的采样率下,同时完成对4种量子态的更高精度估计.

量子状态估计、近似消息传递法、压缩感知、密度矩阵、深度学习

49

O413;TP301.6;TP273

国家自然科学基金;国家自然科学基金

2023-01-16(万方平台首次上网日期,不代表论文的发表时间)

共12页

79-90

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

49

2023,49(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn