期刊专题

10.16383/j.aas.c190591

基于残差的门控循环单元

引用
传统循环神经网络易发生梯度消失和网络退化问题.利用非饱和激活函数可以有效克服梯度消失的性质,同时借鉴卷积神经网络中的残差结构能够有效缓解网络退化的特性,在门控循环神经网络(Gated recurrent unit,GRU)的基础上提出了基于残差的门控循环单元(Residual-GRU,Re-GRU)来缓解梯度消失和网络退化问题.Re-GRU的改进主要包括两个方面:1)将原有GRU的候选隐状态的激活函数改为非饱和激活函数;2)在GRU的候选隐状态表示中引入残差信息.对候选隐状态激活函数的改动不仅可以有效避免由饱和激活函数带来的梯度消失问题,同时也能够更好地引入残差信息,使网络对梯度变化更敏感,从而达到缓解网络退化的目的.进行了图像识别、构建语言模型和语音识别3类不同的测试实验,实验结果均表明,Re-GRU拥有比对比方法更高的检测性能,同时在运行速度方面优于Highway-GRU和长短期记忆单元.其中,在语言模型预测任务中的Penn Treebank数据集上取得了 23.88的困惑度,相比有记录的最低困惑度,该方法的困惑度降低了一半.

深度学习、循环神经网络、门控循环单元、残差连接

48

TP391;TP183;TN919.81

国家自然科学基金;国家自然科学基金;国家重点研发计划

2023-01-05(万方平台首次上网日期,不代表论文的发表时间)

共8页

3067-3074

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

48

2022,48(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn