基于天牛群优化与改进正则化极限学习机的网络入侵检测
正则化极限学习机(Regularized extreme learning machine,RELM)因其极易于实现、训练速度快等优点在诸多领域均取得了成功应用.对此,本文将RELM引入到入侵检测中,设计了天牛群优化算法(Beetle swarm optimization,BSO),并针对RELM由于随机初始化参数带来的潜在缺陷,提出基于天牛群优化与改进正则化极限学习机(BSO-IRELM)的网络入侵检测算法.使用LU分解求解RELM的输出权值矩阵,进一步缩短了 RELM的训练时间,同时利用BSO对RELM的权值和阈值进行联合优化.为避免BSO算法陷入局部最优,引入Tent映射反向学习、莱维飞行的群体学习与动态变异策略提升优化性能.实验结果表明,在机器学习UCI数据集上,相比于RELM、IRELM、GA-IRELM、PSO-IRELM等算法,BSO-IRELM的数据分类性能提升明显.最后,将BSO-IRELM应用于网络入侵检测数据集NSL-KDD,并与BP(Back propagation)、LR(Logistics regression)、RBF(Radial basis function)、AB(AdaBoost)、SVM(Support vector machine)、RELM、IRELM等算法进行了对比,结果证明BSO-IRELM算法在准确率、精确率、真正率和假正率等指标上均具有明显优势.
入侵检测、正则化极限学习机、LU分解、天牛群优化算法
48
TP301.6;S;TP18
国家自然科学基金;国家自然科学基金;国家自然科学基金;国家自然科学基金;江西省自然科学基金;江西省自然科学基金
2023-01-05(万方平台首次上网日期,不代表论文的发表时间)
共18页
3024-3041