广义余弦二维主成分分析
主成分分析(Principal component analysis,PCA)是一种广泛应用的特征提取与数据降维方法,其目标函数采用L2范数距离度量方式,对离群数据及噪声敏感.而L1范数虽然能抑制离群数据的影响,但其重构误差并不能得到有效控制.针对上述问题,综合考虑投影距离最大及重构误差较小的目标优化问题,提出一种广义余弦模型的目标函数.通过极大化矩阵行向量的投影距离与其可调幂的2范数之间的比值,使得其在数据降维的同时提高了鲁棒性.在此基础上提出广义余弦二维主成分分析(Generalized cosine two dimensional PCA,GC2DPCA),给出了其迭代贪婪的求解算法,并对其收敛性及正交性进行理论证明.通过选择不同的可调幂参数,GC2DPCA可应用于广泛的含离群数据的鲁棒降维.人工数据集及多个人脸数据集的实验结果表明,本文算法在重构误差、相关性及分类率等性能方面均得到了提升,具有较强的抗噪能力.
二维主成分分析、广义余弦模型、鲁棒性、范数、降维
48
TP309;TL323;TP181
国家重点研发计划;天津市科技计划
2022-12-08(万方平台首次上网日期,不代表论文的发表时间)
共16页
2836-2851