期刊专题

10.16383/j.aas.c200975

参考点自适应调整下评价指标驱动的高维多目标进化算法

引用
在具有不同Pareto前沿形状的优化问题上,基于参考点的高维多目标进化算法表现出较差的通用性.为了解决这个问题,提出参考点自适应调整下评价指标驱动的高维多目标进化算法(Many-objective evolutionary algorithm driv-en by evaluation indicator under adaptive reference point adjustment,MaOEA-IAR).MaOEA-IAR 提出 Pareto 前沿形状监测基础上的参考点自适应策略,利用该策略选择一组候选解作为初始参考点;然后通过曲线参数对参考点位置进行调整;将最终得到的能够适应不同Pareto前沿的参考点用于计算增强的反世代距离指标,基于指标值设计适应度函数作为选择标准.实验证明提出的算法在处理各种Pareto前沿形状的优化问题时能获得较好的性能,算法通用性高.

参考点自适应、评价指标、高维多目标、Pareto前沿形状

48

TP301.6;TN4;TP18

国家自然科学基金;国家自然科学基金;国家自然科学基金;江西省自然科学基金;江西省优势科技创新团队计划;江西省研究生创新基金项目

2022-07-01(万方平台首次上网日期,不代表论文的发表时间)

共21页

1569-1589

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

48

2022,48(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn