期刊专题

10.16383/j.aas.c200707

污水处理过程出水水质稀疏鲁棒建模

引用
污水处理过程中,出水水质参数是衡量污水处理性能的最重要指标,需要进行严格监测,但现有传感技术难以对其进行实时准确地在线测量.因此,提出一种新型的基于随机权神经网络(Random vector functional-link networks,RVFLNs)与Schweppe型广义M估计(Generalized M-estimation,GM-estimation)的稀疏鲁棒建模方法,用于水质指标的在线鲁棒预测.首先,针对常规RVFLNs隐含层矩阵存在多重共线性而导致最小二乘估计失效的问题,利用稀疏偏最小二乘(Sparse partial least squares,SPLS)代替RVFLNs输出权值求解的最小二乘估计,从而提出SPLS-RVFLNs.该算法不仅可有效解决传统RVFLNs的多重共线性问题,还可以进行建模变量选择,提高模型的可解释性和最终的预测精度.同时,考虑到SPLS-RVFLNs在求解输出权值时会同时受到隐含层矩阵和输出层矩阵两个方向离群点的影响,进一步采用Schweppe型广义M估计对SPLS-RVFLNs进行鲁棒改进,从而提出GM-SPLS-RVFLNs,可显著提高模型的稀疏鲁棒性能.最后,将提出的GM-SPLS-RVFLNs用于污水处理过程出水水质指标预测建模,数据实验结果表明所提方法不仅解决了常规RVFLNs多重共线性和鲁棒性差的问题,而且具有很好的预测精度和泛化性能.

RVFLNs、稀疏鲁棒建模、稀疏偏最小二乘、广义M估计、污水处理、水质指标

48

O212.1;TP183;TP391

国家自然科学基金;国家自然科学基金;国家自然科学基金;辽宁省兴辽英才计划项目;中央高校基本科研业务费项目

2022-07-01(万方平台首次上网日期,不代表论文的发表时间)

共13页

1469-1481

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

48

2022,48(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn