期刊专题

10.16383/j.aas.c200704

一种改进的特征子集区分度评价准则

引用
针对特征子集区分度准则(Discernibility of feature subsets,DFS)没有考虑特征测量量纲对特征子集区分能力影响的缺陷,引入离散系数,提出GDFS(Generalized discernibility of feature subsets)特征子集区分度准则.结合顺序前向、顺序后向、顺序前向浮动和顺序后向浮动4种搜索策略,以极限学习机为分类器,得到4种混合特征选择算法.UCI数据集与基因数据集的实验测试,以及与 DFS、Relief、DRJMIM、mRMR、LLE Score、AVC、SVM-RFE、VMInaive、AMID、AMID-DWSFS、CFR和FSSC-SD的实验比较和统计重要度检测表明:提出的GDFS优于DFS,能选择到分类能力更好的特征子集.

特征子集区分度、特征选择、离散系数、极限学习机、特征搜索策略

48

TP391.41;F273.2;TP18

国家自然科学基金;国家自然科学基金;国家自然科学基金;中央高校基本科研业务费资助

2022-06-22(万方平台首次上网日期,不代表论文的发表时间)

共15页

1292-1306

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

48

2022,48(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn