知识堆叠降噪自编码器
深度神经网络是具有复杂结构和多个非线性处理单元的模型,广泛应用于计算机视觉、自然语言处理等领域.但是,深度神经网络存在不可解释这一致命缺陷,即"黑箱问题",这使得深度学习在各个领域的应用仍然存在巨大的障碍.本文提出了一种新的深度神经网络模型——知识堆叠降噪自编码器(Knowledge-based stacked denoising autoencoder,KBSDAE).尝试以一种逻辑语言的方式有效解释网络结构及内在运作机理,同时确保逻辑规则可以进行深度推导.进一步通过插入提取的规则到深度网络,使KBSDAE不仅能自适应地构建深度网络模型并具有可解释和可视化特性,而且有效地提高了模式识别性能.大量的实验结果表明,提取的规则不仅能够有效地表示深度网络,还能够初始化网络结构以提高KBSDAE的特征学习性能、模型可解释性与可视化,可应用性更强.
深度学习、堆叠降噪自编码器、知识发现、符号规则、分类规则
48
TP391;TP181;TN912.34
国家自然科学基金71771173
2022-04-24(万方平台首次上网日期,不代表论文的发表时间)
共13页
774-786