期刊专题

10.16383/j.aas.c190307

基于压缩因子的宽度学习系统的虚拟机性能预测

引用
在基于基础设施即服务的云服务模式下,精准的虚拟机性能预测,对于用户在众多资源提供商之间进行虚拟机租用策略的制定具有十分重要的意义.针对基于宽度学习系统(Broad learning system,BLS)的预测模型存在许多降低虚拟机性能预测准确性和效率的冗余节点,通过引入压缩因子,构建基于压缩因子的宽度学习系统,使预测结果更逼近输出样本,能够减少BLS的冗余特征节点与增强节点,从而加快BLS的网络收敛速度,提高BLS的泛化性能.

虚拟机性能预测、宽度学习系统、压缩因子、网络收敛速度、泛化性能

48

TP393;G43;R338.1

国家重点研发计划;国家自然科学基金

2022-04-24(万方平台首次上网日期,不代表论文的发表时间)

共11页

724-734

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

48

2022,48(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn