期刊专题

10.16383/j.aas.c190763

融合属性特征的行人重识别方法

引用
行人重识别旨在跨监控设备下检索出特定的行人目标.由于不同的行人可能具有相似的外观,因此要求行人重识别模型能够捕捉到充足的细粒度特征.本文提出一种融合属性特征的行人重识别的深度网络方法,将行人重识别和属性识别集成在分类网络中,进行端到端的多任务学习.此外,对于每张输入图片,网络自适应地生成对应于每个属性的权重,并将所有属性的特征以加权求和的方式结合起来,与全局特征一起用于行人重识别任务.全局特征关注行人的整体外观,而属性特征关注细节区域,两者相互补充可以对行人进行更全面的描述.在行人重识别的主流数据集DukeMTMC-reID和Market-1501上的实验结果表明了本文方法的有效性,平均精度均值(Mean average precision,mAP)分别达到了74.2%和83.5%,Rank-1值分别达到了87.1%和93.6%.此外,在这两个数据集上的属性识别也得到了比较好的结果.

行人重识别;属性识别;深度学习;自适应权重

48

国家自然科学基金;国家自然科学基金

2022-03-18(万方平台首次上网日期,不代表论文的发表时间)

共8页

564-571

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

48

2022,48(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn