期刊专题

10.16383/j.aas.c190630

基于GBDT的铁路事故类型预测及成因分析

引用
运用数据挖掘技术进行铁路事故类型预测及成因分析,对于建立铁路事故预警机制具有重要意义.为此,本文提出一种基于梯度提升决策树(Grandient boosting decision tree,GBDT)的铁路事故类型预测及成因分析算法.针对铁路事故记录数据缺失的问题,提出一种基于属性分布概率的补全算法,最大程度保持原有数据分布,从而降低数据缺失对事故类型预测造成的影响.针对铁路事故记录数据类别失衡的问题,提出一种集成的GBDT模型,完成对事故类型的鲁棒性预测.在此基础上,根据GBDT预测模型中特征重要度排序,实现事故成因分析.通过在开放数据库上进行实验,验证了本文模型的有效性.

事故类型预测;缺失补全;GBDT;集成学习;成因分析

48

科技创新新一代人工智能重大项目;中央高校基本科研业务费;国家自然科学基金;国家自然科学基金

2022-03-18(万方平台首次上网日期,不代表论文的发表时间)

共9页

470-478

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

48

2022,48(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn