一种加速时间差分算法收敛的方法
时间差分算法(Temporal difference methods,TD)是一类模型无关的强化学习算法.该算法拥有较低的方差和可以在线(On-line)学习的优点,得到了广泛的应用.但对于一种给定的TD算法,往往只能通过调整步长参数或其他超参数来加速收敛,这也就造成了加速TD算法收敛的方法匮乏.针对此问题提出了一种利用蒙特卡洛算法(Monte Carlo methods,MC)来加速TD算法收敛的方法(Accelerate TD by MC,ATDMC).该方法不仅可以适用于绝大部分的TD算法,而且不需要改变在线学习的方式.为了证明方法的有效性,分别在同策略(On-policy)评估、异策略(Off-policy)评估和控制(Control)三个方面进行了实验.实验结果表明ATDMC方法可以有效地加速各类TD算法.
强化学习;时间差分算法;蒙特卡罗算法;加速收敛
47
国家自然科学基金项目;江苏省高等学校自然科学研究重大项目;吉林大学符号计算与知识工程教育部重点实验室资助项目;苏州市应用基础研究计划工业部分
2021-08-25(万方平台首次上网日期,不代表论文的发表时间)
共10页
1679-1688