期刊专题

10.16383/j.aas.c180678

基于多注意力机制的维吾尔语人称代词指代消解

引用
针对深度神经网络模型学习照应语和候选先行语的语义信息忽略了每一个词在句中重要程度,且无法关注词序列连续性关联和依赖关系等问题,提出一种结合语境多注意力独立循环神经网络(Contextual multi-attention independently recurrent neural network,CMAIR)的维吾尔语人称代词指代消解方法.相比于仅依赖照应语和候选先行语语义信息的深度神经网络,该方法可以分析上下文语境,挖掘词序列依赖关系,提高特征表达能力.同时,该方法结合多注意力机制,关注待消解对多层面语义特征,弥补了仅依赖内容层面特征的不足,有效识别人称代词与实体指代关系.该模型在维吾尔语人称代词指代消解任务中的准确率为90.79%,召回率为83.25%,F值为86.86%.实验结果表明,CMAIR模型能显著提升维吾尔语指代消解性能.

注意力机制、语境、独立循环神经网络、指代消解

47

TP391;F272;TP183

国家自然科学基金;国家自然科学基金;国家自然科学基金;国家自然科学基金;自治区重大科技项目;人才培养项目

2021-07-06(万方平台首次上网日期,不代表论文的发表时间)

共10页

1412-1421

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

47

2021,47(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn