期刊专题

10.16383/j.aas.c180189

多元时间序列因果关系分析研究综述

引用
多元时间序列的因果关系分析是数据挖掘领域的研究热点.时间序列数据包含着与时间动态有关的、未知的、有价值的信息,因此若能挖掘出这些知识进而对时间序列未来趋势进行预测或干预,具有重要的现实意义.为此,本文综述了多元时间序列因果关系分析的研究进展、应用与展望.首先,本文归纳了主要的因果分析方法,包括Granger因果关系分析、基于信息理论的因果分析和基于状态空间的因果分析;然后,总结了不同方法的优缺点、适用范围和发展方向,并概述了其在不同领域的典型应用;最后,讨论了多元时间序列因果分析方法待解决的问题和未来研究趋势.

多元时间序列、Granger因果分析、转移熵、状态空间

47

国家自然科学基金;中央高校基本科研业务费

2021-03-12(万方平台首次上网日期,不代表论文的发表时间)

共15页

64-78

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

47

2021,47(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn