期刊专题

10.16383/j.aas.c180087

联合嵌入式多标签分类算法

引用
现有的一些多标签分类算法,因多标签数据含有高维的特征或标签信息而变得不可行.为了解决这一问题,提出基于去噪自编码器和矩阵分解的联合嵌入多标签分类算法Deep AE-MF.该算法包括两部分:特征嵌入部分使用去噪自编码器对特征空间学习得到非线性表示,标签嵌入部分则是利用矩阵分解直接学习到标签空间对应的潜在表示与解码矩阵.Deep AE-MF将特征嵌入和标签嵌入的两个阶段进行联合,共同学习一个潜在空间用于模型预测,进而得到一个有效的多标签分类模型.为了进一步提升模型性能,在Deep AE-MF方法中对标签间的负相关信息加以利用.通过在不同数据集上进行实验证明了提出Deep AE-MF方法的有效性和鲁棒性.

多标签分类、矩阵分解、去噪自编码器、标签嵌入

45

国家自然科学基金61202227, 61602004 资助

2019-11-19(万方平台首次上网日期,不代表论文的发表时间)

共14页

1969-1982

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

45

2019,45(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn