期刊专题

10.16383/j.aas.c180554

一种基于动态量化编码的深度神经网络压缩方法

引用
近年来深度神经网络(Deep neural network,DNN)从众多机器学习方法中脱颖而出,引起了广泛的兴趣和关注.然而,在主流的深度神经网络模型中,其参数数以百万计,需要消耗大量的计算和存储资源,难以应用于手机等移动嵌入式设备.为了解决这一问题,本文提出了一种基于动态量化编码(Dynamic quantization coding,DQC)的深度神经网络压缩方法.不同于现有的采用静态量化编码(Static quantitative coding,SQC)的方法,本文提出的方法在模型训练过程中同时对量化码本进行更新,使码本尽可能减小较大权重参数量化引起的误差.通过大量的对比实验表明,本文提出的方法优于现有基于静态编码的模型压缩方法.

深度神经网络、模型压缩、动态量化编码、码本更新

45

国家重点研发计划2018YFB1004504;中央高校基本业务费CCNU19Z02002;中国博士后科学基金2018M632889;湖北省自然科学基金2017CFB504;湖北省创新研究团队2017CFA007;国家自然科学基金61702208, 61807014 资助

2019-11-19(万方平台首次上网日期,不代表论文的发表时间)

共9页

1960-1968

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

45

2019,45(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn