期刊专题

10.16383/j.aas.c190104

一种迁移学习和可变形卷积深度学习的蝴蝶检测算法

引用
针对自然生态蝴蝶多种特征检测的实际需求,以及生态环境下蝴蝶检测效率低、精度差问题,本文提出了一种基于迁移学习和可变形卷积深度神经网络的蝴蝶检测算法(Transfer learning and deformable convolution deep learning network,TDDNET).该算法首先使用可变形卷积模型重建ResNet-101卷积层,强化特征提取网络对蝴蝶特征的学习,并以此结合区域建议网络(Region proposal network,RPN)构建二分类蝴蝶检测网络,以下简称DNET-base;然后在DNET-base的模型上,构建RPN网络来指导可变形的敏感位置兴趣区域池化层,以便获得多尺度目标的评分特征图和更准确的位置,再由弱化非极大值抑制(Soft non-maximum suppression,Soft-NMS)精准分类形成TDDNET模型.随后通过模型迁移,将DNET-base训练参数迁移至TDDNET,有效降低数据分布不均造成的训练困难与检测性能差的影响,再由Fine-tuning方式快速训练TDDNET多分类网络,最终实现了对蝴蝶的精确检测.所提算法在854张蝴蝶测试集上对蝴蝶检测结果的mAP0.5为0.9414、mAP0.7为0.9235、检出率DR为0.9082以及分类准确率ACC为0.9370,均高于在同等硬件配置环境下的对比算法.对比实验表明,所提算法对生态照蝴蝶可实现较高精度的检测.

蝴蝶生态照、可变形卷积、迁移学习、深度卷积神经网络

45

国家重点研发计划重点专项2017YFA0700800;国家自然科学基金61866022,61876161;甘肃省基础研究创新群体1506RJIA031

2019-10-29(万方平台首次上网日期,不代表论文的发表时间)

共11页

1772-1782

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

45

2019,45(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn