基于时序图像深度学习的电熔镁炉异常工况诊断
超高温电熔镁炉(Fused magnesium furnace,FMF)生产炉况监测困难,易发生欠烧异常工况,不仅造成产品质量下降,也直接危害生产安全与人员安全.现有的人工巡检方式实时性差,容易发生漏报和误报,甚至导致铁制炉壳烧透、烧漏.针对该问题,本文采用视频信号,利用电熔镁炉欠烧工况的时空特征,即在炉壳表面出现的局部不规则高亮区域的空间特征,以及该高亮区域随时间呈现出亮度增强、面积变大的时序特征,提出一种基于卷积循环神经网络(Convolutional recurrent neural network,CRNN)的电熔镁炉异常工况诊断新方法.该方法包括图像序列一致性变换和时序残差图像提取预处理、基于卷积神经网络(Convolutional neural network,CNN)的空间特征提取、基于循环神经网络(Recurrent neural network,RNN)的时序特征提取、基于加权中值滤波的工况自动标记.最后采用实际的电熔镁炉炉壳的视频信号,进行了所提方法与现有的两种深度学习网络模型的实验比较研究,结果说明了所提方法的优越性.
电熔镁炉、时空特征提取、异常工况诊断、卷积神经网络、循环神经网络
45
国家自然科学基金61673097,61490704,61490701,61833004
2019-09-25(万方平台首次上网日期,不代表论文的发表时间)
共11页
1475-1485