基于自更新混合分类模型的肌电运动识别方法
传统基于肌电(Electromyography,EMG)的运动识别方法多是利用训练后的固定参数模型,分类已预先定义的有限个目标动作,但对肌肉疲劳导致的肌电变化,以及未定义的外部动作等干扰因素无能为力.针对这一问题,提出一种自更新混合分类模型(Self-update hybrid classification model,SUHC),该模型融合了用于排除外部动作干扰的一类支持向量机(Support vector machine,SVM),以及用于分类目标动作数据的多类线性判别分析(Linear discriminant analysis,LDA),并引入自更新机制以对抗肌电时变性干扰.通过手部动作识别实验验证提出方法的效果,在肌电大幅变化干扰下,SUHC的目标动作识别精度达到89%,对比传统的支持向量机、多层感知器(Multiple layer perceptron,MLP)和核线性判别分析(Kernel LDA,KLDA),提高了约18%,并且SUHC具备排除外部动作干扰能力,排除精度高达93%.
表面肌电、动作识别、模式分类、在线更新、肌肉疲劳
45
国家高技术研究发展计划863计划2015AA042301
2019-09-25(万方平台首次上网日期,不代表论文的发表时间)
共11页
1464-1474