一种自适应特征地图匹配的改进VSLAM算法
从提高机器人视觉同时定位与地图构建(Visual simultaneous localization and mapping,VSLAM)算法的实时性出发,在VSLAM的视觉里程计中提出一种自适应特征地图配准的算法.首先,针对视觉里程计中特征地图信息冗余、耗费计算资源的问题,划分特征地图子区域并作为结构单元,再根据角点响应强度指标大小提取子区域中少数高效的特征点,以较小规模的特征地图配准各帧:针对自适应地图配准时匹配个数不满足的情况,提出一种区域特征点补充和特征地图扩建的方法,快速实现该情形下当前帧的再次匹配:为了提高视觉里程计中位姿估计的精度,提出一种帧到帧、帧到模型的g2o (General graph optimization)特征地图优化模型,更加有效地更新特征地图的内点和外点.通用数据集的实验表明,所提方法的定位精度误差在厘米级,生成的点云地图清晰、漂移少,相比于其他算法,具有更好的实时性、定位精度以及建图能力.
同时定位与地图构建、视觉里程计、角点响应、区域特征补充、地图扩建、g2o
45
国家自然科学基金51205405,51305454
2019-05-06(万方平台首次上网日期,不代表论文的发表时间)
共13页
553-565