基于稀疏表示的视频目标跟踪研究综述
视频目标跟踪在计算机视觉领域有着广泛应用,由于目标自身和外界环境变化的复杂性和难以预知性,使得复杂场景下鲁棒实时目标跟踪成为一项亟待解决的关键问题.由于视觉信息可以用少量神经元进行稀疏表示,因此稀疏表示已经广泛应用于人脸识别、目标检测和目标跟踪等计算机视觉领域.本文旨在对基于稀疏表示的视频目标跟踪算法进行综述.首先,介绍了基于稀疏表示的视频目标跟踪算法中的字典组成;其次,介绍了稀疏模型的构建及求解算法和模型更新,并对算法复杂度进行了简要分析;然后,对现有公开代码的稀疏表示跟踪算法在测试数据上进行了实验分析,结合算法模型和实验结果对其进行了分析;最后,对基于稀疏表示的视频跟踪算法存在问题进行了讨论,并对未来的研究趋势进行了展望.
视频跟踪、稀疏表示、算法评估、实验分析
44
国家自然科学基金61472442,61773397,61473309,61773397
2019-01-07(万方平台首次上网日期,不代表论文的发表时间)
共17页
1747-1763