期刊专题

10.16383/j.aas.2018.c170334

改进模糊熵算法及其在孤独症儿童脑电分析中的应用

引用
模糊熵(Fuzzy entropy,FuzzyEn)是衡量时间序列在维数变化时产生新模式的概率,反映时间序列复杂性和无规则程度的参数指标.本文针对传统模糊熵算法只针对时间信号序列进行总体分析,忽略了瞬时信号变化的问题,提出了一种改进模糊熵的算法.算法将指数函数的宽度进行了优化设置,设置为0.15倍一阶差分时间序列的标准差,以此保证充分提取时间序列瞬时复杂性特征.与传统模糊熵相比,改进模糊熵包含更多时间模式信息.基于改进模糊熵结合锁相位算法,分析孤独症儿童脑电信号(Electroencephalogram,EEG)复杂性与同步性,结果表明:孤独症(Autism spectrum disorders,ASD)前颞叶的脑电信号同步性下降、复杂性降低,具有显著性差异(P<0.05).

脑电信号、孤独症、模糊熵、锁相位

44

国家自然科学基金51677162;中国博士后科学基金2014M550582;河北省自然科学基金F2014203244

2018-10-22(万方平台首次上网日期,不代表论文的发表时间)

共7页

1672-1678

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

44

2018,44(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn