低分辨雷达目标分类的最小代价拒判算法
为解决低分辨雷达目标自动识别中,干扰目标、虚假目标的存在以及不同类别目标样本集混叠的问题,提出了一种基于最小代价的拒判K近邻识别算法.该算法根据雷达识别系统最小代价的原则,利用Fisher判别函数,确定拒判门限.设计了基于两类拒判域的K近邻识别算法,第一类拒判根据训练样本集特征值的波动范围,对干扰目标和虚假目标进行拒判;第二类拒判根据测试样本与最近邻、次近邻的距离差,实现混叠区域的目标样本拒判.算法先对测试样本进行拒判分析,再利用K近邻算法识别分类.实验结果表明,基于以上算法的低分辨雷达目标识别系统具有较好的鲁棒性和识别性能.
低分辨雷达、目标分类、拒判域、K-近邻
44
国家自然科学基金61471198,61671246
2018-11-28(万方平台首次上网日期,不代表论文的发表时间)
共10页
1062-1071