期刊专题

10.16383/j.aas.2017.c160274

基于形态字典学习的复杂背景SAR图像舰船尾迹检测

引用
SAR图像舰船尾迹检测不仅可用于反演运动舰船的航速航向信息,也有助于发现弱小舰船目标.然而现有舰船尾迹检测方法一般仅适用于简单海况背景下的SAR图像,复杂海况背景下的检测效果难以满足应用需求.本文提出一种基于形态成分分析与多字典学习的复杂背景舰船尾迹检测方法.该方法针对海况背景的复杂多变性以及舰船尾迹类型的有限性,通过离线学习方式构建海面纹理字典,通过解析方式构建尾迹结构字典并迭代更新,将图像分解为包含舰船尾迹的结构成分与包含海面背景的纹理成分,利用剪切波变换对结构成分高频系数重构以增强结构成分,并通过Radon变换对增强后的结构成分进行尾迹线检测.实验结果表明,本文所提方法对于复杂背景SAR图像舰船尾迹检测的效果明显优于现有方法.

SAR图像、舰船尾迹检测、形态成分分析、字典学习、剪切波变换

43

TP3;TN9

国家自然科学基金61501008;首都卫生发展科研专项2014-2-4025;National Natural Science Foundation of China61501008;The Capital Health Research and Development of Special Funding2014-2-4025

2018-01-04(万方平台首次上网日期,不代表论文的发表时间)

共13页

1713-1725

暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

43

2017,43(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn