期刊专题

10.16383/j.aas.2017.c160720

统计机器学习中参数可辨识性研究及其关键问题

引用
参数可辨识性研究在统计机器学习中具有重要的理论意义和应用价值.参数可辨识性是关于模型参数能否被惟一确定的性质.在包含物理参数的学习模型中,可辨识性不仅是物理参数获得正确估计的前提条件,更重要的是,它反映了学习机器中由参数决定的物理特征.为扩展到未来类人智能机器研究的考察视角,我们将学习模型纳入“知识与数据共同驱动模型”的框架中讨论.在此框架下,我们提出两个关键问题.第一是参数可辨识性准则问题.该问题考察与可辨识性密切相关的各种判断准则,其中知识驱动子模型与数据驱动子模型的耦合方式为参数可辨识性问题提供了新的研究空间.第二是参数可辨识性与机器学习理论和应用相关联的研究.该研究包括可辨识性对参数估计、模型选择、学习算法、学习动态过程、奇异学习理论、贝叶斯推断等内容的深刻影响.

可辨识性、统计机器学习、参数估计、奇异学习理论、贝叶斯推断

43

TP3;TP1

国家自然科学基金61573348,61620106003;National Natural Science Foundation of China61573348,61620106003

2018-01-04(万方平台首次上网日期,不代表论文的发表时间)

共10页

1677-1686

暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

43

2017,43(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn