全局与局部判别信息融合的转子故障数据集降维方法研究
针对传统的数据降维方法无法兼顾保持全局特征信息与局部判别信息的问题,提出一种核主元分析(Kernel principal component analysis,KPCA)和正交化局部敏感判别分析(Orthogonal locality sensitive discriminant analysis,OLSDA)相结合的转子故障数据集降维方法.该方法首先利用KPCA算法有效降低数据集的相关性、消除冗余属性,由此实现了最大程度地保留原始数据全局非线性信息的作用;然后利用OLSDA算法充分挖掘出数据的局部流形结构信息,达到了提取出具有高判别力低维本质特征的目的.上述方法的特点是通过同时进行的正交化处理可避免局部子空间结构发生失真,采用三维图直观显示出低维结果,以低维特征子集输入最近邻分类器(K-nearest neighbor,KNN)的识别率和聚类分析之类间距Sb、类内距Sw作为衡量降维效果的指标.实验表明该方法能够全面地提取出全局与局部判别信息,使故障分类更清晰,相应地识别准确率得到了明显提升.该研究可为解决高维和非线性机械故障数据集的可视化与分类问题,提供理论参考依据.
故障诊断、数据可视化、数据降维、核主元分析、正交化局部敏感判别分析
43
TH1;TP1
国家自然科学基金51675253;教育部高等学校博士学科点专项科研基金20136201110004;National Natural Science Foundation of China51675253;the Doctor Science Research Foundation of the Education Ministry of China20136201110004
2017-06-13(万方平台首次上网日期,不代表论文的发表时间)
共8页
560-567