期刊专题

10.3724/SP.J.1004.2013.01100

基于近邻传播学习的半监督流量分类方法

引用
准确的流量分类是进行网络管理、安全检测以及应用趋势分析的基础.针对完全监督和无监督分类的缺陷,提出了一种基于近邻传播学习的半监督流量分类方法.通过引入“近邻传播聚类”机制构建分类模型,使得分类器实现过程简单、运行高效.应用“半监督学习”的思想,抽象出少量已标记样本流约束和流形空间先验信息,定义了“流形相似度”的距离测度,既降低了标记流量样本的复杂度,又提高了流量分类器的性能.理论分析和实验结果表明:算法具有较高的分类准确性和较好的凝聚性.

流量分类、半监督学习、近邻传播聚类、流形相似度

39

国家重点基础研究发展计划973计划2012CB312901,2012CB312905;国家高技术研究发展计划863计划2011AA01A103;National Basic Research Program of China 973 Program2012CB312901,2012CB312905;National High Technology Research and Development Program of China 863 Program2011AA01A103

2013-10-16(万方平台首次上网日期,不代表论文的发表时间)

共10页

1100-1109

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

39

2013,39(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn