期刊专题

10.3724/SP.J.1004.2010.01681

Kernel-kNN:基于信息能度量的核k-最近邻算法

引用
提出一种核k最近邻算法.首先给出用于最近邻学习的信息能度量方法,该方法克服了高维数据不便于用传统距离度量表示的困难,提高了数据间类别相似性和距离的一致性.在此基础上,将传统的kNN扩展为非线性形式,并采用半正定规划学习全局最优的度量矩阵.算法主要特点是:能较好地适用于高维数据,并有效提升kNN的分类性能.多个数据集的实验和分析表明,本文的Kernel-kNN算法与传统的kNN算法比较,在低维数据上,分类准确率相当;在高维数据上,分类性能有明显提高.

距离度量、非线性变换、k-最近邻(k-NN)、核方法

36

TP3(计算技术、计算机技术)

国家自然科学基金重点项目60933009;国家自然科学基金61070137;60702063

2011-03-25(万方平台首次上网日期,不代表论文的发表时间)

1681-1688

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

36

2010,36(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn