期刊专题

10.3724/SP.J.1004.2008.00869

基于LS-SVM的非线性多功能传感器信号重构方法研究

引用
提出了基于最小二乘支持向量机(Least squares support vector machine,LS-SVM)的非线性多功能传感器信号重构方法.不同于通常采用的经验风险最小化重构方法,支持向量机(Support vector machine,SVM)是基于结构风险最小化准则的新型机器学习方法,适用于小样本标定数据情况,可有效抑制过拟合问题并改善泛化性能.在SVM基础上,LS-SVM将不等式约束转化为等式约束,极大地简化了二次规划问题的求解.研究中通过L-折交叉验证实现调整参数优化,在两种非线性情况下对多功能传感器的输入信号进行了重构,实验结果显示重构精度分别达到0.154%和1.146%,表明提出的LS-SVM重构方法具有高可靠性和稳定性,验证了方法的有效性.

多功能传感器、信号重构、最小二乘支持向量机、交叉验证

34

TP212(自动化技术及设备)

国家自然科学基金60772007,60672008;中国博士后科学基金20070410258;教育部留学回国人员科研启动基金BAQQ24403602

2008-09-24(万方平台首次上网日期,不代表论文的发表时间)

共7页

869-875

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

34

2008,34(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn