期刊专题

基于最近邻规则的神经网络训练样本选择方法

引用
训练集中通常含有大量相似的样本,会增加网络的训练时间并影响学习效果.针对这一问题,本文将最近邻法(Nearest neighbor,NN)简单快捷和神经网络高精度的特点相结合,提出了一种基于最近邻规则的神经网络训练样本选择方法.该方法考虑到训练样本对于神经网络性能的重要影响,利用改进的最近邻规则选择最具有代表性的样本作为神经网络的训练集.实验结果表明,所提出的方法能够有效去除训练集中的冗余信息,以少量的样本获得更高的识别率,减少网络的训练时间,增强网络的泛化能力.

神经网络、样本选择、最近邻规则、手写字符识别

33

TP391.41(计算技术、计算机技术)

国家自然科学基金60675006

2008-03-27(万方平台首次上网日期,不代表论文的发表时间)

共5页

1247-1251

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

33

2007,33(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn