基于多假设跟踪的移动机器人自适应蒙特卡罗定位研究
针对移动机器人蒙特卡罗定位(Monte Carlo localization,MCL)算法在含有对称和自相似结构的环境中容易失败的问题,提出了一种基于多假设跟踪的自适应蒙特卡罗定位改进算法.该算法根据粒子间空间相似性采用核密度树聚类算法对粒子群进行聚类,每簇粒子代表一个位姿假设并用一个独立的MCL算法进行跟踪,总体上形成了一组非等权的粒子滤波器,很好地克服了普通粒子滤波器由于粒子贫乏而引起的过度收敛问题.同时运用该核密度树实现了自适应采样,提高了算法的性能.针对机器人"绑架"问题对该算法作了进一步的改进.实验结果证明了该算法的有效性.
移动机器人、蒙特卡罗定位、多假设跟踪、核密度树
33
TP24(自动化技术及设备)
国家自然科学基金69975003
2007-11-05(万方平台首次上网日期,不代表论文的发表时间)
共6页
941-946