期刊专题

基于DWT-TEO的说话人识别

引用
针对在噪声环境下的说话人识别系统,做了两点改进.第一,为了提高系统的鲁棒性,通过不同尺度的小波基,把含有噪声的信号分解于不同频段中,然后在各个频段分别通过TEO(Teager能量算子)去噪.针对说话人识别的特点,在小波重构时对各小波系数进行了加权处理.再把各个频段的输出通过小波重构恢复信号.最后通过Mel滤波器组把小波系数转换成MFCC.第二,为了进一步提高识别性能和训练速度,在识别阶段采用了改进的OGMM(正交高斯混合模型),即把正交变换改到EM算法之前进行,这样就不必要在EM迭代过程中每次都进行正交运算了.从实验得出,采用本文提出的DWT-TEO参数对于说话人识别的效果较好.采用改进的OGMM进一步提高了识别性能和训练速度.

小波变换、TEO、DWT-TEO、OGMM

32

TN91

广东省自然科学基金000872

2006-10-18(万方平台首次上网日期,不代表论文的发表时间)

共7页

753-759

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

32

2006,32(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn