期刊专题

超闭球CMAC的性能分析及多CMAC结构

引用
如何选择合适网络参数是传统CMAC(Cerebellar Model Articulation Controller)应用中的一个难题.采用泛化均方差(GMSE)和学习均方差(LMSE)来分别评价超闭球CMAC的泛化能力与记忆精度,并引入权调整率的概念,来研究CMAC结构参数与学习性能的关系.研究结果表明,在样本分布和量化级数不变时,泛化均方差和学习均方差是权调整率的非增函数.因此超闭球CMAC在满足存储空间和计算速度的要求下尽量使得权调整率较大.还提出了并行CMAC结构以进一步提高单个超闭球CMAC的非线性逼近能力.仿真结果证明了该方法的有效性.

CMAC、神经网络、泛化能力、学习精度

26

TP2(自动化技术及设备)

2004-03-19(万方平台首次上网日期,不代表论文的发表时间)

共5页

563-567

相关文献
评论
暂无封面信息
查看本期封面目录

自动化学报

0254-4156

11-2109/TP

26

2000,26(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn