期刊专题

10.16450/j.cnki.issn.1004-6801.2024.04.005

转子裂纹深度自适应预测与故障诊断

引用
针对传统的转子结构裂纹故障识别方法中特征提取困难、无法定量识别裂纹深度及受噪声污染严重的问题,提出了一种基于转子轴心轨迹的转子裂纹深度预测模型.该模型基于奇异值分解和卷积降噪自编码器(singular value decomposition-denoising convolutional autoencoder,简称SVD-DCAE),能够有效提取裂纹转子的故障特征并准确预测转子裂纹的扩展阶段.将裂纹转子的轴心轨迹作为模型的输入,分别使用仿真数据和实验数据训练和验证模型,并在仿真数据和实验数据中添加随机噪声模拟不同噪声环境.结果显示:所提出模型能够实现转子裂纹扩展程度的准确预测,在弱噪声环境中(信噪比为10 dB)裂纹深度预测准确率高于98%;具有较强的抗噪声能力和鲁棒性,在强噪声环境中(信噪比为-10 dB)预测准确率达到80%,远高于其他经典的卷积神经网络预测模型.

裂纹转子、裂纹深度预测、轴心轨迹、奇异值分解

44

TH133.2

国家自然科学基金;船舶动力基础科研计划资助项目

2024-09-12(万方平台首次上网日期,不代表论文的发表时间)

共8页

660-667

相关文献
评论
暂无封面信息
查看本期封面目录

振动、测试与诊断

1004-6801

32-1361/V

44

2024,44(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn